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A comparative study of conditions for chaos onset in Duffing-type weakly and strongly nonlinear os-
cillators is carried out. Quasiperiodically forced oscillators with combined parametric and external exci-
tation are considered. The concept of induced saddle states is introduced in order to illuminate reasons
for chaos arising in weakly nonlinear systems. The conditions for, and the mechanisms of, the transition
to chaos are investigated in detail, both analytically and numerically, for the case of weakly nonlinear os-
cillators. Multistability properties of the oscillators are studied as well. An important application of the
theory is the stability analysis of parametric amplifiers.

PACS number(s): 05.45.+b

I. INTRODUCTION

The phenomena of parametric generation, amplifi-
cation of oscillations, and frequency conversion are dis-
tinguishing features of the dynamics in a variety of physi-
cal systems. For single-degree-of-freedom oscillators,
which are the subject of the present paper, many of these
phenomena can be adequately described within the
framework of the universal mathematical model, like the
equation

¥+ [ 1—M cos(w,t)]x
=—(8p+8x)x +yx3+ 4 cos(w,t) (1)

of an oscillator subjected to combined parametric and
external forcing. Here x is a generalized coordinate,
8p>0 and §,>0 are the coefficients of linear and non-
linear damping, ¥ is the nonlinearity parameter, o, is the
natural frequency of the oscillator, and M and A4 are the
amplitudes of parametric and external forcing with in-
commensurate frequencies w, and w,. For example, in
the case of optical or microwave parametric amplitudes,
M and A are proportional, respectively, to the amplitude
of a pumping oscillation and that of a signal wave to be
amplified. Note that the oscillator (1) can be considered a
Duffing type one, due to the limitations imposed on the
coefficients §,>0 and §, > 0.

It is well known that parametric amplifiers often
demonstrate a high level of noise in the output signal.
Moreover, a sudden increase in the noise level may occur
unexpectedly under a comparatively small variation of
controls. We suppose that one possible reason for such
behavior can be provided by the rise of a chaotic instabil-
ity. Although this idea is not new and chaos in paramet-
ric systems has been studied for a long time, the majority
of the investigations have focused on strongly nonlinear
operation modes, which are not typical in many practical
situations. Therefore, the results obtained in the frame-
work of this approach cannot explain high noise level in
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weakly nonlinear systems. In this work we show that the
high output noise in parametric amplifiers may be due to
the appearance of chaotic instability in the weakly non-
linear limit. This problem, being of great importance for
applications, has hardly been investigated yet.

Let us briefly mention some results obtained so far for
Eq. (1). One such case is the harmonically driven
Duffing oscillator, whose dynamics have been extensively
investigated by many authors, starting from the now clas-
sical works in this field [1-4]. It was shown, in particu-
lar, that the rise of chaotic motions is associated with the
formation of a homoclinic structure in the phase space of
the system, due to a transverse intersection of stable and
unstable manifolds of hyperbolic periodic orbits. In the
presence of dissipation this intersection occurs if some
threshold condition in the external force or nonlinearity
parameter is met. Usually, there exists an intrinsic rela-
tion between the parameters of external force and the de-
gree of nonlinearity that defines the condition of homo-
clinc structure formation. It is a commonly accepted no-
tion that under small or nonresonant forcing the system
evolves in a weakly nonlinear, or regular, regime, which
could be made strongly nonlinear, and even chaotic, ei-
ther by adjusting the parameters of excitation (increasing
the amplitude or frequency tuning to the resonant region)
or by increasing the parameter controlling the nonlineari-
ty. It thus seems reasonable to assert that the degree of
nonlinearity of a given oscillatory regime is defined by the
intensity of oscillations resulting from the excitation or
the system’s intrinsic properties [5] and the system can be
treated as a weakly nonlinear one at small amplitudes of
motion, being strongly nonlinear if the oscillations are
comparatively intense. It is interesting to note in this
respect that it is a widely spread opinion that the non-
linearity parameter must be large for chaos to arise in any
single-degree-of-freedom dissipation oscillator with exter-
nal excitation. However, as already mentioned and will
be clear below, it is not exactly so.

Notice that, beginning with the above-mentioned pa-
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pers and up to now, mainly systems possessing a homo-
clinic trajectory (or trajectories) to a hyperbolic saddle
point(s) in their Hamiltonian limit have been studied.
From now on, we will refer to singular points of this type
as original saddle points, due to the fact that these unsta-
ble hilltop solutions [6] exist in the nonperturbed oscilla-
tors, when the dissipation and amplitudes of external and
parametric forces vanish. The systems with an original
saddle point are amenable to a theoretical treatment by
using a global perturbation technique developed by Mel-
nikov [1], which is presumably the main reason why these
systems have received such detailed consideration (see
Refs [7,8]). This technique was generalized by Wiggins
[9] to the case of quasiperiodically forced oscillators. In
the problems of this type, the origin of chaos was once

again associated with the existence of the original saddle °

point and the mechanism for chaotic states to appear was
stated to be the same as for harmonically forced oscilla-
tors, i.e., a strong nonlinearity plus the intersection of
manifolds associated with original saddle points.
However, for quasiperiodically forced oscillators, there
is another possible way of chaos arising, which is not
directly related to the existence of homoclinic orbits in
the nonperturbed system and where the large nonlineari-
ty parameter is not required. In this case, the complicat-
ed dynamics and the associated chaotic behavior arise
due to the occurrence of various resonances that typically
lead to the increase in oscillation amplitude under the
variation of control parameters defining the external
force. Such a possibility was predicted and studied
theoretically by several authors in Refs. [10-12] and
proved experimentally in Refs. [13,14]. The alternative
way of the transition to chaos here is associated with the
appearance of saddle orbits in the vicinity of resonances,
which result from the action of one of the harmonic com-
ponents in the external force. We will refer to such kinds
of solutions as induced saddle orbits. With the availabili-
ty of additional components of comparatively low intensi-
ty in the external force, normally hyperbolic invariant
tori are formed in the phase space instead of induced sad-
dle trajectories. The chaos thus results from the trans-
verse intersection of stable and unstable manifolds of the
induced tori under the increase of perturbation. The for-
mation of a homoclinic structure occurs in such a situa-
tion at much lower values of the excitation amplitude
compared to the case when this structure arises on the
basis of an original saddle point. Moreover, it was found
in [15] that any degree of nonlinearity, however small,
may initiate the formation of chaotic states. The theoret-
ical and experimental study of applications [14—17] has
shown that the threshold of chaos onset with respect to
the amplitude of external excitation is decreased by
several orders of magnitude when the harmonic force is
replaced by a quasiperiodic one. The existence of chaotic
states in the weakly nonlinear limit implies that the con-
dition of a large nonlinearity parameter for chaos to arise
is not always necessary and the influence of chaotic insta-
bilities my have much more profound effect on the dy-
namics of real system compared to the one that could be
anticipated from the traditional way of thinking. On the
other hand, there are a lot of typical situations where one

can expect to observe chaotic states under weakly non-
linear excitation conditions, including various types of os-
cillators with a quasiperiodic force [10-16], multimode
autonomous and nonautonomous systems [18-20], distri-
buted systems with wave interaction [21], etc. It should
be noted that the origin of chaotic dynamics in weakly
nonlinear systems is still not known and many of the
principal problems concerning the dynamics of oscilla-
tors remain to be considered from this point of view.

In this paper we study the transition to chaos in
parametrically forced weakly nonlinear oscillators of type
(1) in the vicinity of the primary resonance. Actually,
this corresponds to the case of a small resonant periodic
perturbation of the system just after the onset of the first
periodic-doubling bifurcation. A similar problem, but be-
fore the onset of period doubling, has recently attracted
significant attention [22] in the context of the stability
analysis of nonlinear oscillators. It was shown in particu-
lar that such a kind of perturbation may either lead to
suppression of the period-doubling supercritical instabili-
ty [22] or induce the bifurcation if tuned in the subcritical
region [23]. We investigate here both cases in the situa-
tion when the system’s period has been already doubled
and the parameter values are tuned within a region far
beyond the criticality.

For better illustration of the results obtained, we re-
view, in Sec. II, the conditions for the formation of chaot-
ic states in a strongly nonlinear oscillator and then com-
pare them with the chaotic states in the quasilinear limit.
When studying the dynamics of weakly nonlinear oscilla-
tors, we use the method of averaging. This enables us to
specify a particular resonance problem and investigate in
detail the properties of induced saddle states. The transi-
tion from Eq. (1) to the averaged system is described in
Sec. III, along with the discussion of some properties of
the averaged equations. In Sec. IV we make use of these
equations to determine the conditions of existence for the
induced saddle orbits under the parametric excitation. It
should be mentioned that induced saddle trajectories in
the initial equation (1) manifest themselves as singular
saddle points in the averaged equations.

In the following sections, we focus on the conditions of
chaos onset in the weakly nonlinear system. Two typical
problems are considered, depending on the number of the
induced saddle states coexisting in the phase space and
corresponding to super- and subcritical transitions to
period-doubled motion in the harmonically excited sys-
tem [22-24]. Accordingly, Sec. V deals with induced
homoclinic orbits, whereas the case with heteroclinic or-
bits is studied in Sec. VI. In these sections we apply
Melnikov’s method to the averaged equations in order to
obtain analytical conditions for the formation of homo-
clinic (or heteroclinic) structures associated with the in-
duced saddle states. These results are compared with
those deduced from detailed numerical simulations.
Characteristic features of the oscillators’ dynamics per-
taining to the rise of chaotic and multistable states are
also considered. Finally, Sec. VII contains a summary
and discussion. Some additional information on the dy-
namics of weakly nonlinear oscillators with parametric
excitation can be found in Refs. [12,16,25-29].
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II. STRONGLY NONLINEAR OSCILLATORS

In this section we review some general conditions for
the rise of chaotic states in the strongly nonlinear oscilla-
tors. Let us rewrite Eq. (1) as a system of first-order equa-
tions

=y, y=—ox+ef(x,p1), 2)
where

F(xp,t)=—(8;+8;x2)x +yx?

+w§Mx cos(w,t)+ A cos(w,t) . 3)

The € factor is introduced in Eq. (2) in order to express,
in an explicit form, the degree of nonlinearity of the oscil-
lator.

To obtain analytically the conditions of chaos onset
through Melnikov’s method, we make use of the fact that

at 6,=86,=A4 =M =0 the solution is defined by the.

Hamiltonian [2]

2 dx? 4
L _Y _eyx
H(x,x) Tt e 4)

Provided y >0, this system possesses two original saddle
points in the phase space (x,y), with coordinates

y=0, x=zw,/Vey (5)

and a heteroclinic orbit (separatrix) shown in Fig. 1. The
solution of the motion equations for |x| <wy/V'ey on the
separatrix is given by

(t) 4 wo ¢ h wo(t'—to)
x=x.(t)==% an = s
§ Vey V2

wi Wyt —ty)
y=ys(t)=:F‘/%; tanh? 0‘/50 -1,

where ¢, is an initial moment of time. The upper and
lower signs in these expressions correspond, respectively,
to the upper and lower parts of the separatrix in Fig. 1.
Note that a coexisting center-type singular point is locat-
ed at y =0, x =0 in the phase space of the system (4).
The influence of other terms of the function (3) not in-
cluded in Eq. (4) is considered as a perturbation. Such an
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FIG. 1. Phase portrait of the Hamiltonian system (4). S; and
S, are saddle points and C'is a center.

/
x

approach permits us to apply the standard Melnikov
technique developed for similar systems (see Refs. [1-3]
for details). We eventually come to the expression
defining the formation of the homoclinic structure

Tw, [o50) W
Mo, »
Aw,csch |—= ———csch =
V2w, V2ey V2w,
20} 8,03
Z — [8¢ (6)
37Viey Sey

This criterion is usually considered a necessary condi-
tion for chaos to arise. It incorporates a variety of partic-
ular cases that have been studied so far. For example, as-
suming 8,=0, we have from Eq. (6) the condition of a
heteroclinic structure arising (obtained in Ref. [2]) for the
oscillator with two-frequency excitation. Setting, in addi-
tion, M =0 in Eq. (6), we arrive at the result given in Ref.
[1] for a harmonically forced oscillator.

It is evident from Eq. (6) that chaotic oscillations can
arise if there is either only the parametric excitation
(A =0) or only the external one (M =0). Under the
combined excitation ( 470 and M +0), the threshold of
the chaos arising is essentially unchanged.

At first sight this justifies approaches, frequently used
for the analysis of stability in parametric amplifiers, when
only the pumping signal is taken into account. Such an
approach implies that the interaction between the
amplified signal and pumping oscillation does not change
the stability threshold. However, it will be demonstrated
in subsequent sections that there are additional mecha-
nisms leading to chaos at extremely small perturbations,
resulting from this interaction.

Now let us consider the transition to the case of a
quasilinear oscillator that corresponds to the limit e—0.
According to Eq. (5), the x coordinate of the saddle
points tends to o and the value of the Hamiltonian on
the separatrix is

H =w}/(4ey)— o .

Suppose that under the influence of perturbation the
manifolds of the saddle points intersect transversely, giv-
ing rise to a heteroclinic tangle, and a strange attractor
appears in the phase space, provided the tangle becomes
attractive. Then the maximum values of x on the attrac-
tor should also increase as 1/Ve with decreasing € since
the attractor should include one of the saddles. From the
motion equation (3) we see that the nonlinear term eyx?
tends to infinity as 1/ Ve. Because of this, the term can-
not be considered a small one in such a situation and
hence the transition to chaos cannot be considered in the
weakly nonlinear limit. However, this observation is true
only if we deal with the formation of heteroclinic struc-
tures associated with the original saddle points (5). The
overall behavior is changed dramatically if we take into
account that additional saddle states may arise under the
action of external or parametric forces. In this case the
interaction of the external frequencies can lead to chaotic
states even in the weakly nonlinear limit.
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III. AVERAGED EQUATIONS

Hereinafter we study the general conditions of chaos
arising in weakly nonlinear oscillators, assuming that the
right-hand side of Eq. (2) is small, that is,
g|f(x,y,t)] <<1. For definiteness, we restrict our con-
sideration by the case of principal parametric resonance
when

lo—awl =0(ewy) , |0, —wy=0(cawy) , )]

where ©o=w,/2. However, it should be stressed that a
similar treatment could be given to any other order reso-
nances as well. Then, by using the transformation

x =U coswt + V sinwt ,
(8)

y=—Uwsinwt+ Vo coswt ,

we have instead of (2)

sinwt

l’]= __.C_o_[(wz—a)%)x +Ef(X,_V,t)] ’

9

V=" (0~ adx +ef(xy,0]
where f(x,y,t) and x,y are defined by Egs. (3) and (8).

The condition of the perturbation smallness and the

resonant conditions (7) allow us to apply the method of

averaging [30] to these equations. Neglecting the terms

O(g?), we have the following system of averaged equa-
tions for the slowly varying time functions U (1), V(7):

4av_ —[ap+a (U+V)]U
dr
—[A—m+BU*+ V]V —p sinQr, 10)
ﬂ=—[ao+a1(U2+V2)]V
dr
+[A+m+B(U>+V?)]U+p cosQr ,
where dimensionless parameters are introduced:
7'=8copt/2 So/a) , =§, /(4co ), m=M/4,
p=2A/w B 37//(2(0 )>0 A—(w 2a)0)/ewp, and
Q=(w,— 2w )/(ew, ).

For mere parametric excitation (p =0) this system is
reduced to a second-order autonomous system. It is also
true for the case of an externally forced oscillator
(m =0). The latter statement is easily verified with the
help of the transformation

U=—U%*cos(Q7)+ V*sin(Q71) ,
V=—U%*sin(Q7)—V*cos(Q71) ,

which leads to the autonomous system in terms of
U*,v*.

On this basis we conclude again that weakly nonlinear
oscillators with harmonic excitation cannot have any
chaotic states. Such states can arise here only due to the
interaction of the external frequencies provided that one
of the frequency components induces a saddle orbit in the
phase space of the system (10).

The transition from the original equations to the aver-

aged ones allows us to reduce the bifurcation problem for
two-dimensional tori in the phase space of the original
system (1) to the analysis of bifurcations of periodic orbits
in the phase space of the system (10). It is important to
note that the later system does not contain € as an in-
dependent parameter. The changes in € lead only to the
variation in the time scale of the excited oscillations, pro-
vided the values of parameters A and Q are kept con-
stant. From this it follows that, if the system (10) demon-
strates chaotic behavior, then such behavior can arise for
any degree of €, however small, i.e, the quasilinear limit.

IV. INDUCED SADDLE STATES

The averaged equations are a convenient tool for the
detection of saddle points and the corresponding homo-
clinic or heteroclinic orbits that arise due to a resonant
force. Such saddle states can be induced by both para-
metric and external forces included in Eqgs. (10). We shall
consider the case when the amplitude of the external ex-
citation p is relatively small and the induced saddle states
can arise mainly due to the parametric component. This
case is of prime interest in many practical situations, e.g,
for microwave and optical parametric amplifiers where
the amplitude of the pumping wave (proportional to m) is
much greater than that of the signal wave (proportional
to p). The opposite case was considered by Yagasaki [25].

Assuming that the dissipation and the external forcing
are absent, we have instead of (10) the Hamiltonian sys-
tem

%=—[A—m +RUHVY
(11)
Z‘T/ [A+m +BU+ VU ,

with Hamiltonian energy given by

H(U,V)=— B(Uz+ p2)— [(A m)V2+(A+m)U] .

(12)

A similar system was investigated in detail in [4] in the
context of a period-doubling study in the double-well
Duffing equation. For the sake of clarity we will repro-
duce here some of its basic points. Unlike the previous
case [see Eq. (4)], this Hamiltonian contains the ampli-
tude of modulation m as a parameter. In the following
we set m >0 without loss of generality. As long as
m <A, there is only a center-type singular point at the
origin, whereas for m > A one can find from (11) that the
center splits into three (at m > |A|) or five (at m < —A)
singular points. The two possible situations are illustrat-
ed by the phase portraits of the system (11) in Fig. 2.
Note that the orbits depicted constitute a Poincaré map
of the initial system at §,=8,= 4 =0 and at small values
of the amplitude of the forced oscillations. When
m > |A| (supercritical region), there are three singular
points: a saddle point at the origin (U =0,V =0) and
two centers with coordinates (U, V)=(0,£V (m —A)/B),
which are denoted as C,,C, in Fig. 2(a). In the second
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FIG. 2. Phase portraits of the Hamiltonian system (11) for (a)
|A]l <m and (b) m < —A.

case, when m < —A (subcritical region), there are three
centers C;,C,,C; and two saddle points in the phase
space with coordinates U= F+V(—m —A)/B,V =0, as
shown in Fig. 2(b). Namely because of these saddle
points the system possesses induced homoclinic or
heteroclinic orbits (separatrices) also indicated in Fig. 2.
Because of the induced centers, the system acquires a
multistability property when a,70 (see below).

Let us now consider in more detail the structure of the
separatrix loops for both cases. At m >|A| there is a
double symmetric separatrix. The solution of the motion
equations (11), U=U(7) and V=V (1), on this homo-
clinic orbit was found in Ref. [16] and can be written in
the form

r1V2(m —A)/Bsinh[r (r—1,)]
m cosh[2r;(7— 1) ]+ A ’
r1V2(m +A)/Bcosh[r (t—1y)]
m cosh[2r (t—7()]+A ’

U/(r)=
(13)

V. (7)|=

where r2=m?—A? and 7, is an initial moment of the

“slow” time.

In the second case shown in Fig. 2(b), because of the
two saddle points, double heteroclinic orbits arise, to be
referred to as small and large orbits. After some calcula-
tions one can find the following expression for the solu-
tion on these trajectories:

r,V'—A/Bm sinh[2r,(1—17,)]

Uy ()= )
(1) V/—Acosh[2r,(1—70) ] FVm
(14)
—r,V—(m +A)/Bm
V, =7 ,
V() V' —Acosh[2r,(1—7g) ] FVm
where r;=—m(m+A) and F correspond to the large

and small loops of the separatrix, respectively.

Under the influence of dissipation, the areas of the pa-
rameter space where the saddle states exist are reduced.
However, for any value of the linear (a;< «) and non-
linear (a; < ) dissipation these regions remain finite.

Let us analyze this case by introducing the corresponding
dissipative terms into the system (11). Then instead of
(11), we have

%= —[ay+a(U+V)U—[A—m +BU+ VIV,
i (15)
o= —[ap+a(U+VHIV+[A+m +B(U+VHU .

This system yields the following equation for the equili-
bria:

m2=(A+BW?*)*+(ay+a,W?)?, (16)

where W2=U?+V? and W is the amplitude of oscilla-
tion. Note the existence of a singular point at W =0 as
well. The amplitudes of stationary states versus A (the
response curve of the oscillator) are shown in Fig. 3. The
saddles are indicated by dashed curves. It is easy to
check that the saddle state at W =0 exists in the parame-
ter region

m>v A2+a}, (1mn
whereas if
a,—aA —_—
B——0—2—12<m <V A+, (18)
\/B +aj

such states are present at W0, provided the frequency
detuning A satisfies the inequality

Qo
B

The above given conditions (17)-(19) determine the re-
gions in the parameter space where Melnikov’s method
can be applied to the system (10). These conditions
should be considered as restrictions on the parameters
that are complementary to the ones to be found from
Melnikov’s criterion in subsequent sections. All of them
together determine the threshold of chaos arising with

A< —

(19)

IW?

FIG. 3. Response cure of the system (15) for ay=1, a;=0.1,
B=1, and m =5. Solid curves correspond to stable states and
dashed ones to saddle-type states. The boundaries between re-
gions with different behavior are A,=(Bay—mV a?+B)/a,
and A, ;= F \/mz—a(z,.
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respect to the amplitude and frequency of the parametric
force, thus constituting a resonant condition for chaos to
exist.

V. CHAOTIC STATES OF THE OSCILLATOR
WITH INDUCED HOMOCLINIC ORBITS

In this section we consider the mechanism of the tran-
sition to chaos in the supercritical area, i.e, for the oscil-
lator with the single induced saddle point and a pair of
associated homoclinic orbits shown in Fig. 2(a). The
second case will be considered in Sec. VI. We start from
the application of Melnikov’s method to the averaged
equations (10) and find necessary conditions for chaos on-
set with respect to the parameters defining the excitation.
Assuming that the dissipation and the amplitude of exter-
nal force p are small, we write down the Melnikov func-
tion A,.(7y), which determines the distance between
stable and unstable manifolds of the saddle orbit in the
Poincaré cross section of the averaged system

AM(TO): f_w [Rl(Usr Vs’T)QO( US’ VS)
—0(U,, ¥V, T)IR(Uy, V) )dr,  (20)

where
Roy=—[A—m+BUZ+V)V,,
Qo=[A+m+BU+ VU, ,
R, =—[ay+a(U}+V])]U,—psinQr,
Q1=—[ay+a(U2+V2)]V,+p cosQr .

The functions U (7) and V(7) are given by relations
(13). After performing the integration in Eq. (20), we find

2
AM(TO)=—%)-(r1—A9)+z—g[3Ar1—(m2+2A2)9]
p Qcos(Q1y)
—_— (7] , 21
V' Bm cosh(val)exp( 1) @D

where o,;=Q/(2r;), 6=arccos(A/m). The equation
defining the manifolds’ intersection A, (74)=0 yields the
necessary condition of chaos onset:

2V'm /B cosh(mo )
TQ exp(6o,)

=

ay
X ao[rl~A6]—7[3r1A—(m2+2A2)0] . (22)

The equality sign corresponds to p =p_., where p_. is the
lowest threshold of the homoclinic structure arising with
respect to the amplitude of external force. Figure 4
shows a typical dependence of p. versus () for various
values of nonlinear dissipation. The function p_ () al-
ways possesses two minima: one in the region >0 and
another at () <0. The so-defined threshold of chaos onset
has a lower value if >0 and it decreases with the in-
crease of the nonlinearity parameter 8 and modulation m.

The condition of the manifolds’ intersection found

3
2
1
44
0

v i gu

FIG. 4. Threshold of the homoclinc structure arising p., ac-
cording to Melnikov’s criterion versus ) for various values of
nonlinear dissipation: (1) a;=0, (2) a@;=0.05, and (3) &;=0.1
for a¢p=1,B8=1,m =5,and A=—0.5.

from Melnikov’s criterion was compared with the thresh-
old of chaos arising from computer experiments. Ac-
cording to current concepts, the manifolds may be ex-
pected to touch just before the appearance of a strange
attractor in the phase space, which in turn would be the
attractive homoclinic structure resulting from the mani-
folds’ intersection.

Prior to discussing the results of numerical experi-
ments, we would like to note that Egs. (10) are invariant
with respect to the transformations U——U, V——V,
and 7— 7+ /Q. This means that two types of attractors
can exist in the phase space of the system: symmetric at-
tractors and/or pairs of asymmetric orbits. Consequent-
ly, all bifurcation phenomena observed for one of the
asymmetric attractors take place simultaneously for the
second one.

An example of the bifurcation diagram obtained in the
parameter plane (,p) is shown in Fig. 5. The location
of the homoclinic tangency according to the condition
(22) is shown by curve 9. The rise of strange attractors
found numerically is indicated by curves 6 and 10. One
can find reasonably good agreement between these re-
sults.

At the same time, there are some evident discrepancies,
especially concerning curve 10. In a wide range of Q
variation (approximately 8 <) <18) strange attractors
appear before the intersection of manifolds corresponding
to the homoclinic trajectories (13) happens. Therefore,
the question immediately arises about the origin of the in-
consistency between critical values of control parameters
from Melnikov’s approach and actual ones found by
direct numerical integration of the system (10). It could
be suggested that the gap between the corresponding
curves in Fig. 5 appears because of the approximate char-
acter of calculations in the framework of Melnikov’s
theory, which, being a kind of perturbation analysis,
gives an inexact position of the parameter values where
the intersection of manifolds occurs. In order to check
whether this hypothesis is correct we have computed nu-
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FIG. 5. Bifurcation diagram of the system (10) for a;=1, ¢;=0.1, =1, A=—0.5, and m =5. Curves 7-9 denote the boundaries
of the homoclinic structures formation: 9, according to Melnikov’s criterion (22); 8, the same as 9, but found numerically; 7, for the
saddle orbit, appearing after the first period-doubling bifurcation (curve 2). Other lines: 1, saddle-node bifurcation in the vicinity of
principal external resonance; 3 and 4, second period doubling; 6 and 10, boundaries of strange attractors arising near the principal
parametric and external resonances, respectively. Arrows indicate the direction of change in the control parameters where the bifur-
cations described in the text occurs. For lines 1 and 5 arrows show the way for jumps between different coexisting attractors.

merically the invariant manifolds of the periodic saddle
orbit in a Poincaré cross section of the phase space. The
actual boundary in the parameter plane, where the stable
and unstable manifolds corresponding to the homoclinic
trajectories (13) [see also Fig. 2(a)] touch, is denoted by
the curve 8 in Fig. 5. It is thus clear that the above con-
jecture is wrong and hence some other mechanisms of
chaotic attractors formation, different form the one
amenable to Melnikov’s method, should be considered.
It is also evident from Fig. 6, where the plot of a typical
structure of the intersected manifolds on the Poincaré
plane together with two coexisting chaotic attractors is
shown. Note that the strange attractors, although locat-
ed very close to the homoclinic structure, do not coincide

FIG. 6. Poincaré map of the system (10) with stable (dashed
curves) and unstable (solid curves) manifold associated with the
induced homoclinic orbit (13) for p=5.5, Q=16, a,=1,
a;=0.1, =1, A=—0.5, and m =5. Dots indicate the position
of two strange attractors on the Poincaré plane.

with the outset of the saddle.

To gain a better insight into the mechanism of the ap-
pearance of chaos, let us trace some characteristic bifur-
cations in the system. It should be noted here that Egs.
(10) describe the motion in an oscillatory system. There-
fore, the system should possess resonant properties that
play important role in the dynamics. Within the parame-
ter range considered we have detected two resonant areas
with different chaotic attractors in each of them. They
correspond, respectively, to the principal resonance
(2= Q) in the vicinity of foci (centers C,,C, after intro-
ducing the dissipation) and the main parametric reso-
nance (Q~2€),), where (), stands for the natural fre-
quency of the oscillations at p =0.

Interesting enough is that the properties of averaged
equations (10) describing the dynamics of system (1) un-
der two frequency excitation are qualitatively analogous
to those of Eq. (1) at harmonic excitation [4,31,32] (see
also, Sec. IV). Indeed, for example, at Q=Q, ,~17,
P =pPi,~4% one can easily recognize the organizing
center for the principal parametric resonance, corre-
sponding to the border between the sub- and the super
criticality of a period-doubling bifurcation. In the vicini-
ty of this point the qualitative picture of dynamics corre-
sponds to the one following from expressions (18) and
(19) for the system (15). We thus see in a sense the self-
similarity of the oscillator (1) under the specific type of
excitation considered in the present work. At
0=0,=7.2, p=p;=2.2 the principal external reso-
nance occurs manifesting itself in well-known hysteretic
jumps between attractors resulting from the saddle-node
bifurcation, when crossing the border of the area del-
ineated by curve 1 on Fig. 5.

For the sake of clarity we consider now what happens
if p is increased while the value of Q > ), is kept constant
for the both resonances shown in Fig. 5. The case Q <Q,
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Fig. 7. Two coexisting (a) regular attractors for p =2.5 and
Q=13 and (b) chaotic attractors for p =4 and Q=13.

will be described in detail in Sec. VI in the context of
heteroclinic saddle points. At small p we observe two
stable periodic orbits (two coexisting symmetric attrac-
tors) as shown in Fig. 7(a), which arise in the vicinity of
former centers C;,C, existing in the Hamiltonian system
(11). At lines 2 or 5 the attractors undergo the first
period-doubling bifurcation. Then one can observe a few
further periodic doublings resulting in different chaotic
attractors for both resonances. A pair of strange attrac-
tors arises at each of the lines 6 or 10, corresponding to
parametric and external resonances, respectively, as illus-
trated in Fig. 7(b) for the former case. Our analysis has
shown that for both resonances the homoclinic structure
originating from additional saddle orbits, which typically
arises after each of period doublings in the place of losing
their stability periodic motions, plays the key role in the
formation of chaos. The structure of stable and unstable
manifolds of such an additional saddle period-1 orbit in
the Poincaré section is depicted in Fig. 8, along with the

-4+

-8 t +-

c o

FIG. 8. Poincaré map of the system (10) with stable (dashed
curves) and unstable (solid curves) manifolds associated with the
saddle orbit S arising after the first period-doubling bifurcation
for p =5.5, =16, ay=1, ¢;=0.1, =1, A=—0.5, and m =5.

coordinates of the saddle. The touching of the manifolds
occurs at curve 7 in Fig. 5. This curve fits the borders 6
and 10 a little better than 8. A comparison of Figs. 6 and
8 demonstrates that it is the outset of the saddle shown in
Fig. 8 that coincides with the chaotic attractor shown in
Fig. 6. Our experiments also indicate that just after the
accumulation point of period doublings, i.e., after the
strange attractor arises at line 6 or 10, the intersection of
manifolds of high-period unstable orbits occurs, being
presumably the main reason for chaos to arise.

The given example of the bifurcation diagram shows
again that the application of Melnikov’s technique should
always be accompanied by additional detailed numerical
experiments because of a variety of possible roads to
chaos. Additional examples in favor of this point will be
given in the next section.

VI. CHAOTIC STATES OF THE OSCILLATOR
WITH INDUCED HETEROCLINIC ORBITS

In this section we shall analyze the conditions for the
chaos onset and study some properties of the system (10)
for the case |A|>m. We being again from Melnikov’s
criterion. To derive it explicitly, we can use again the ex-
pressions (20) for the distance between stable and unsta-
ble manifolds A, (7,) in Poincasé map. For the case un-
der consideration, the functions U (7) and V(1) involved
in (20) are given by the expressions (14). Performing the
integration in (20), we have

2a0
B
2mo,pV —(m +A)/Bcos(Qrg)
+ ;
sinh(7mo,)

X exp( :tazB¢ ),

2a1A
Ap(1)= [r,FAOT]— 7 [3r,2(2m —A)8 T ]

(23)

where 0,=Q/(2r,) and 67 =arccos( FV'—m /A). The
upper and lower signs correspond to the large and small
separatrix loops [see Fig. 2(b)], respectively. Setting
Ay (79)=0, we get from (23) the condition of the mani-
folds intersection

sinh(7o,)

7o,V —(m +A)/Bexp(+o,07)

p=

aA

1
X 2

Qa,
f[rﬁwx]—

[3r2i<2m—A)9¢]H .

(24)

A typical example of the bifurcation diagram in the pa-
rameter plane (p,) obtained numerically, together with
Melnikov’s criterion (curve 1), is given in Fig. 9. It
should be stressed that the overall bifurcation pattern
shown in Fig. 9 in many respects similar to the one given
in Fig. 5. The only essential difference consists in the
part concerning the attractor in the vicinity of origin,
which is, of course, absent in the case considered in Sec.
V. The best way to explain all possible types of behavior
in the system is again to start from the Hamiltonian case,
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Q

FIG. 9. Bifurcation diagram of the system (10) at ap=1, a;=0, =1, A=

10 15

—6, and m =5. Curves 1-3 correspond to the attrac-

tors formed on the base of the small heteroclinic loop: 1, the boundary of the existence of homoclinic structure according to
Melnikov’s criterion; 2, symmetry breaking; 3, the first period-doubling bifurcation. Curves 4-7 are related to the attractors due to
the principal external resonance: 4, saddle-node bifurcation; 5 and 6, first and second periodic-doubling bifurcations; 7, attractor
crises. Curves 9 and 8 correspond to the large heteroclinic loop and represent boundaries of the existence of homoclinic structure
found numerically and with Melnikov’s criterion correspondingly. Curve 10 denotes the position where the intersection between the
stable manifold of the small loop and the unstable manifold of the large loop takes place.

i.e., Fig. 2(b), and then set a,70. Thus, we obtain three
stable foci instead of three centers and all trajectories will
eventually go to one of them, depending on initial condi-
tions. We mark the attractors that arise in the vicinity of
centers C,,C,,C; as 4, A,, A3, respectively, that is, the
system is three-stable initially. Provided the amplitude p
is small enough, the foci turn to stable periodic orbits and
the three of them exist simultaneously in the phase space.
The attractor A4; undergoes the symmetry breaking
crises (pitchfork bifurcation) at curve 2, and to the left of
it, four attractors (4,, 4,, A3, A3) coexist in the phase
space. At curve 3 both attractors A4;, 43 undergo the
first period-doubling bifurcation and then a pair of
strange attractors appears through the period-doubling
cascade. In Fig. 10(a) the situation is given when these
two attractors merge and a unified strange attractor aries.
It turns out that the strange attractors in this parameter
region are very sensitive to the variation of parameters
and exist only in a very narrow band adjacent to curve 3.
Obviously, their basins of attraction are small and the

V1
Vo
-1
2 -3
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U U
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FIG. 10. All coexisting attractors of the system (10) at (a)
0=3.95 and p=1.9 and (b) 2=9.2 and p =2.8 for ap=1,
a;=0,B=1,A=—6,and m =5.

majority of initial conditions lead to two stable attractors
coexisting with them.

In this area of the parameter plane the rise of strange
attractors may be associated with the intersection of
manifolds originating from the small loop. Hence, in this
case Melnikov’s criterion seems to work well and good
predictions can be developed on its basis.

Another region of chaos in Fig. 9, with much higher
values of the threshold in the amplitude p, is related to
the principal external resonance in the system (10). Let
us trace the bifurcations leading to the chaos arising with
the increase in the amplitude p at fixed 2=9.2. If p is
small, then there are also three coexisting periodic attrac-
tors A,,A,,A;. At p=1.1 within the parameter area
delimited by curve 4 in Fig. 9 each of the orbits 4, and
A, splits into two stable (A4, 4] and A,, 45) and one
saddle (A7} and 47 ) orbits. This happens because of the
tangent (or saddle-node) bifurcation under the influence
of the external force. Note that in this parameter region
the period-1 saddle orbits induced by the parametric and
additive forces coexist. With the p value increasing, the
stable orbits A} and A transform to strange attrators
through period doublings, starting from line 5. In this
area the chaotic dynamics is strongly influenced by the
homoclinic structure due to the intersection of stable and
unstable manifolds of the saddle orbits 4 and A5 in-
duced by the external force. Initially, two strange attrac-
tors may coexist with three regular ones, as is shown in
Fig. 10(b). The extreme sensitivity of these strange at-
tractors to small fluctuations also takes place in this case.
The chaotic oscillations exist only in a narrow area near
period doublings between curves 6 and 7 and any phase
trajectory is eventually attracted to periodic orbits after
chaos breaks down.

As in Sec. V, Melnikov’s technique does not allow us to
predict the appearance of these strange attractors. The
intersection of manifolds originating from the large loop
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FIG. 11. Intersection of the stable (dashed curve) manifold of
the small loop and the unstable (solid curve) manifold of the
large loop in the Poincaré section for p =3.2, =12, q;=1,
a;=0,B=1,A=—6,and m =5.

associated with the parametrically induced saddles S, ,
[see Fig. 2(b)] takes place at relatively large values of the
external amplitude indicated by curve 8 in Fig. 9. This
curve practically coincides with that found from
Melnikov’s criterion (curve 9). One can conclude again
that the method is rather accurate in predicting the ap-
pearance of a homoclinic structure but cannot be used as
an exact predictor of chaotic dynamics. On the other
hand, a better result could probably be obtained through
Melnikov’s method by considering the parametric force
as a perturbation rather than the external force (see, e.g.,
Ref. [25]).

At the same time, another peculiarity has been found
next to curve 10, where a specific type of homoclinic
structure formation has been observed. In this region an
additional homoclinic structure is formed, resulting from
the intersection of the manifolds from different loops,
large and small, but not from either one of them alone.
This situation is illustrated in Fig. 11, where the crossing
of the unstable manifold of the large loop and the stable
manifold of the small loop takes place. We thus observe
two different mechanisms for the same manifolds: either
the heteroclinic tangency and crossing at line 8 or the
homoclinic intersection at curve 10. Such a mechanism
has not received much attention and has practically not
been studied yet. It seems interesting to find other sys-
tems exhibiting this road to complicated behavior, as well
as to develop an analytical tool to detect the presence of
such homoclinic structures.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have considered the conditions of the
chaotic states arising in weakly nonlinear Duffing-type
oscillators subjected to the combined parametric and
external forcing. It was shown that the homoclinic or
heteroclinic orbits induced by one of the external har-

monic components play a crucial role in the oscillator dy-
namics. Because of these orbits, the formation of a
homoclinic (or heteroclinic) structure takes place in the
weakly nonlinear limit under the action of incommensu-
rate frequencies and the chaos onset occurs due to the de-
struction of a two-dimensional torus. The generality of
these results does not depend on the type of perturbation
considered and they most probably hold for a variety of
single-degree-of-freedom systems with quasiperiodic
force.

Chaotic states of weakly nonlinear oscillators manifest
themselves in the form of a weak chaotic modulation of
the amplitude and phase of the periodic oscillation with
the frequency close to the natural one w, of the oscillator.
The characteristic time scale of the modulation is of the
order of wy/€, which is much greater than 1/, As a re-
sult, the direct investigation of these states by using the
governing equation of type (1) for the oscillator dynamics
would lead to a cumbersome computational procedure.
There are also no analytical methods that could detect
the chaotic states in this case. One way to avoid these
problems is to use the averaging method. The averaged
equations essentially simplify the computational prob-
lems, but, more importantly, they provide a great field for
the application of analytical methods for chaos detection.
In this way we have determined the conditions for the
formation of chaotic states on the basis of homoclinic and
heteroclinic orbits induced by the parametric forcing.
These analytical results include, in the first place, the
arising conditions (17)—(19) for the induced saddle states,
which give the critical values of the parametric force am-
plitude and frequency range where chaos may arise. A
complementary condition of the parameters defining the
external force have been obtained in the framework of
Melnikov’s technique and is given by Eq. (22) or (24).
Joint application of above-mentioned criteria enables us
to define quite accurately the regions in the control pa-
rameter space where chaos may arise in the weakly non-
linear limit.

It should be noted that these conditions, unlike those
obtained for the strongly nonlinear oscillator, do not con-
tain explicitly the parameter €, as well as the equations of
the induced separatrix loops. Because of this property,
the restriction imposed by the perturbation smallness
e|f(x,y,t)] <<1 is no longer in contradiction with the
conditions of the chaos onset and hence the chaotic states
can arise in physical systems with any degree of non-
linearity, however small. Variation in the € value leads
only to a change in the characteristic time scale of the
chaotic modulation.

We detailed some of the phenomena that accompany
the chaos onset. Multistability of the oscillator condi-
tioned by the formation of several attracting sets in the
phase space is one of them. This study, along with the
foregoing ones [6,18,31,32], suggests that the multistabili-
ty is a typical feature of the forced nonlinear oscillators.
It has been shown in this paper that the splitting of a
center-type singular point into several stable and unstable
orbits under the action of the resonant periodic force is
primarily responsible for the multistability property of
the oscillator, at least for relatively small values of the



53 CHAOTIC STATES OF WEAKLY AND STRONGLY NONLINEAR . .. 113

force amplitude.

Three typical mechanisms leading to complicated
behavior in the system under investigation, depending
upon the manner of the homoclinic (heteroclinic) struc-
ture formation have been discussed. Let us cite them as
they appeared, in terms of the averaged equations. The
first one is through the intersection of stable and unstable
manifolds of some parametrically or externally induced
homoclinic or heteroclinic loop (see Fig. 6). The second
one is through the manifolds’ intersections of additional
saddle orbits resulting from the loss of stability of stable
periodic motions in period doubling bifurcations (see Fig.
8). The third road is through the intersection of stable
and unstable manifolds associated with different loops
(see Fig. 11).

An important motivation for this work results from ex-
perimental investigations of microwave parametric
amplifiers, which clearly indicated that the amplifiers,
stable under the action of only pumping oscillation or sig-
nal wave, lose their stability when both oscillations are
applied simultaneously [26]. The results of this paper
give an explanation of such a phenomenon and provide
mathematical tools for its study and prediction. It is also
obvious that our results are applicable, within certain
limits, to other types of similar devices, say, Josephson-
junction parametric amplifiers and optical amplifiers. It
is worth noting that the factors that are responsible for
the chaos onset in the weakly nonlinear limit and hence

for the low stability threshold of the parametric
amplifiers are precisely the same as the ones that provide
the low noise amplification property from the point of
view of the conventional theory of parametric devices.
Indeed, according to the classical results of this theory,
parametric amplifiers possess a low noise output level be-
cause they consist of a reactive circuit (nonharmonic os-
cillator) and they utilize an ac power supply (pumping os-
cillation). In terms of the mathematical model used in
this paper, the reactive type of nonlinearity is described
by the component with parameter ¥ and the pumping
amplitude is given by the parameter m [see (1)]. Proceed-
ing from the results obtained, it is clear that exactly the
combination of this type of nonlinearity and the form of
parametric excitation lead to the possibility of the chaos
onset in the weakly nonlinear limit, when the external
signal is applied. Thus this seems to be the main reason
why the parametric amplifiers, along with a number of
similar practical systems, are extremely susceptible to
chaotic instabilities.
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